GEOTHERMAL PROJECT DEVELOPMENT HURDLES

August 1, 2007

Richard Goff, Manager, Engineering Resource Development & Construction

A Quick Overview of PacifiCorp

- We supply and distribute electric energy in six western states: California,
 Idaho, Oregon, Utah, Washington, and Wyoming
- Three business units:
 - ▶ PacifiCorp Energy: Generation, Mining, and Commercial & Trading
 - Rocky Mountain Power: Provides transmission & distribution services in Idaho, Utah, and Wyoming
 - Pacific Power: Provides transmission & distribution services in California, Idaho, and Oregon
- 1.67 million customers
- Over 9,500 MW of generating resources (net capability)
 - Thermal \sim 8,000 MW (coal and gas)
 - ▶ Hydro ~1,200 MW
 - ▶ Renewables ~300+MW (wind and geothermal)
 - Contracts (includes wind, coal, and gas)
- Over 6,500 employees

© 2007 PACIFICORP | PAGI

PacifiCorp's Service Territory

© 2007 PACIFICORP | PAGE

MidAmerican Energy Holdings Company

PacifiCorp's Renewable Generation Commitments

- The 2007 Integrated Resource Plan (IRP) sets revised renewable targets:
 - ▶ 1,400 MW The original target date of 2015 has moved to 2010. The <u>commitment</u> remains at 1,400 MW;
 - ▶ 2,000 MW The 2007 IRP targets 2,000 MW of renewable resources in PacifiCorp's portfolio by 2013. The incremental 600 MW is considered a target.

What Do We Count as Renewable Generation?

- What counts toward the 1,400 MW commitment or the 2,000 MW target?
 - Much of this will come from wind, but not all.
- We have defined several resources that "count"
 - Hydro (new and upgrades)
 - Qualifying facility and renewables PPAs
 - ▶ Solar, wave & "waste"
 - Geothermal (new and upgrades)

Background on Our Blundell Geothermal Plant

Geothermal

Blundell Plant (Looking From North to South)

© 2007 PACIFICORP | PA

Blundell Plant (Looking From West to East)

© 2007 PACIFICORP | PA

Blundell Unit 1 Facts

- Location: Milford, Utah, Beaver County
- Geothermal Resource: Roosevelt Hot Springs
- Generating unit owned and operated by PacifiCorp Energy
- Commercial Date: July 1984
- Net Capability: 23 MW
- Process Design: Single flash
- Steam Conditions: 108 PSIA at 340 degrees F; General Electric steam turbine-generator
- Brine, along with excess condensate, is re-injected
- Very high availability (89 % equivalent availability for 10year period, 1997-2006)
- Valued as an <u>excellent</u> "base load" renewable resource due to its firm capacity and reliability

Blundell Unit 1 Hurdles After Start-up

- Scaling of turbine-generator with silica and some sodium
 - Lost more than 5 MW of capability in the first 6 weeks
 - Not dry steam
- Silica scaling of injection wells
- We learned each geothermal reservoir is unique
 - There is "limited transfer" of lessons learn from one site to another

Blundell Unit 2 Expansion

© 2007 PACIFICORP | PA

Technology - Ormat Organic Rankine Cycle (ORC); uses iso-pentane

Budget – \$28 million (includes interconnection and AFUDC)

Target Commercial operation - November 2007

Constructor – CEntry

Ownership – 100 percent interest

Key factors to watch:

- Silica precipitation at lower injection temperatures and acid injection technology application
- Cold brine injection temperatures for Unit startup
- ▶ Equipment limited experience

Process Cycle Schematic – After Bottoming Cycle Addition

Blundell Bottoming Cycle Addition

Blundell Plant During Milford Flat Fire

© 2007 PACIFICORP | PA

General Hurdles for Geothermal Project Development

- Timeline
- Expensive modeling of the production capacity and fluid quality of the geothermal fluid
- Uncertain sustainability of the geothermal resource
- Selection of a process technology
- Well drilling expenses and rig availability
- Well completion risk
- Construction costs
- Project economics
- Application of production tax credits and renewable energy certificates

General Hurdles (Continued)

- Complete estimate of asset life cycle costs including future capital, O&M, and geothermal fluid royalty fees
- Since more "recharge" fluid may be returned to the reservoir than available heat, careful reservoir management must be planned
- Transmission interconnection costs as typical site are not close to loads
- Property and right-of-way acquisition
- Geothermal resource acquisition, typically on federal lands, requiring an extensive approval process
- Water resources
- Limited equipment experience
- "Proving" the geothermal resource is expensive!

Representative Hurdles for a Blundell Unit 3 Expansion Project Development

- Reservoir modeling of the Roosevelt Hot Spring reported that an additional development of about 35 MW was sustainable for 30 years
- Estimated production/confirmation well drilling expenses:
 - ▶ 36" diameter hole to a depth of 100'
 - ▶ 26" diameter hole to a depth of 500'
 - ▶ 17.5" diameter hole to a depth 1700'
 - ▶ 12.25' diameter hole to a depth of 5000'
 - ▶ Estimated expense of \$4.0 million
- Similarly, injection/confirmation well drilling expenses:
 - Depth of 6000'
 - Estimated expense of \$4.5 million

© 2007 PACIFICORP | PAGE

Representative Hurdles (Continued 1)

- Project would require a total well field of four production wells and four injection wells at a cost of \$34 million
- In addition to capital costs, life of asset operating expenses include:
 - ▶ Fixed and variable O&M; included special maintenance
 - Overhaul expenses
 - BLM royalty fees
 - On-going capital
 - Discrete on-going capital, that is, additional wells in the future to sustain steam flow
 - Transmission interconnection direct assigned facility charge and duration risk

Representative Hurdles (Continued 2)

- Benefit to cost ratio, without application of production tax credits, may not be competitive to other generation resources
- Project schedule, with at-least a 570 day turbinegenerator installation interval
- Uncertainty regarding extension of production tax credits application
- Transmission interconnection expenses

Selecting Competing Generation Resources

- Cost of Energy analysis (Capex & O&M)
- Risk analysis around major parameters:
 - Performance (availability, reliability, resource)
 - Capital cost
 - Periodic well maintenance costs and on-going capital
 - O&M and royalties
 - ▶ RPS cost comparison to other renewables options
- Availability and application of incentives:
 - PTC/ITCs
 - Renewables benefits ("carbon, green tags")
- 3rd Party expert evaluations of geothermal resource

Geothermal Project Development Options

- Power Purchase Agreement
- Prove geothermal resource and transfer asset
- Joint development (subject to due diligence and appropriate risk sharing)
- Build, Own, Operate, Transfer (BOOT) covers development, resource and operational risk

General Feelings

- Geothermal is a nice generating resource
- The Idaho National
 Laboratory's map on the
 right illustrates the
 geothermal energy potential
 in western Utah

Thank You

– Contacts:

- Nick Rahn, VP Resource Development & Construction, nick.rahn@pacificorp.com, 801-220-4715
- Richard Goff, Manager, Engineering, <u>richard.goff@pacificorp.com</u>, 801-220-4818